Estimation of K–Distributed Clutter by using Characteristic Function Method
نویسندگان
چکیده
منابع مشابه
Effi cient Estimation using the Characteristic Function∗
The method of moments proposed by Carrasco and Florens (2000) permits to fully exploit the information contained in the characteristic function and yields an estimator which is asymptotically as effi cient as the maximum likelihood estimator. However, this estimation procedure depends on a regularization or tuning parameter α that needs to be selected. The aim of the present paper is to provide...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Characteristic function of a meromorphic function and its derivatives
In this paper, some results of Singh, Gopalakrishna and Kulkarni (1970s) have been extended to higher order derivatives. It has been shown that, if $sumlimits_{a}Theta(a, f)=2$ holds for a meromorphic function $f(z)$ of finite order, then for any positive integer $k,$ $T(r, f)sim T(r, f^{(k)}), rrightarrowinfty$ if $Theta(infty, f)=1$ and $T(r, f)sim (k+1)T(r, f^{(k)}), rrightarrowinfty$ if $Th...
متن کاملEmpirical Characteristic Function Estimation and Its Applications
This paper reviews the method of model-fitting via the empirical characteristic function. The advantage of using this procedure is that one can avoid difficulties inherent in calculating or maximizing the likelihood function. Thus it is a desirable estimation method when the maximum likelihood approach encounters difficulties but the characteristic function has a tractable expression. The basic...
متن کاملTwo-stage estimation using copula function
Maximum likelihood estimation of multivariate distributions needs solving a optimization problem with large dimentions (to the number of unknown parameters) but two- stage estimation divides this problem to several simple optimizations. It saves significant amount of computational time. Two methods are investigated for estimation consistency check. We revisit Sankaran and Nair's bivari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Teknologi
سال: 2012
ISSN: 2180-3722,0127-9696
DOI: 10.11113/jt.v48.223